Lately I’ve been thinking a lot about thinking. There are a couple of reasons for this.
First, doing it well is a prerequisite to developing any dependable expertise in any kind of computer science or engineering discipline. With the right mental toolset, you can bootstrap any of the subject matter knowledge you could possibly need.
Second, in my experience, it is the aspect of computer science and engineering that gets the least amount of attention. There is a veritable deluge of training resources online. But most of them cut right to the nuts and bolts of gaining basic competency with the software tooling to qualify someone for a job. This is understandable to a point. If you’ve never programmed before, the skill you immediately feel yourself lacking is the use of a programming language. It’s only natural, then, to attack that head-on.
But while it’s not as exciting as rolling up your sleeves and saying “hello” to that world, taking the time to learn how to learn, and how to solve problems that can’t be solved by coding harder, will pay off in the long run.
What follows will outline what I have found to be the most essential cognitive skills that contribute to engineering success.
Your Harshest Critic Should Be Your Thinking
The primacy of critical thinking is such a worn-out aphorism that most people whom I prompt to scrutinize it are inured to it. That shouldn’t lead anyone to mistakenly believe it isn’t indispensable, though.
Part of the problem is that it’s easy for those who advocate critical thinking to assume their audience knows what it is and how to do it. Ironically, that assumption itself could benefit from undergoing some critical thought.
So, let’s go back to basics.
Wikipedia defines critical thinking as “the analysis of available facts, evidence, observations, and arguments to form a judgment.” What do the most load-bearing words here mean? “Facts,” “evidence,” and “observations” are related, as they all endeavor in their own ways to establish what we reasonably believe to be true.
“Facts” are generally proven prior by (usually) others whose discernment we trust. “Evidence” is made up of specific measured outcomes cataloged by you or other trustworthy individuals. “Observations” implies those that the critical thinker themselves has made. If these, too, were phenomena that others (and not the thinker) witnessed, then how would this meaningfully differ from “evidence?”
“Arguments” is the odd one out here, but for good reason. This is where “thinking” (specifically reasoning) really starts its heavy lifting. “Arguments” describes how the thinker makes rational determinations that point to additional knowledge based on how the facts, evidence, and observations interact.
The most important word of the definition is “judgment.” Critical thinking does not concern itself necessarily with trying to prove new truths. All that critical thinking requires is that the consideration of all the foregoing yields some overall estimation of whatever is under consideration.
These judgments don’t have to be absolute but may be probabilistic. As long as the result is that the entity being considered has been “judged,” and the judgment accounts for all available information (not just that which leads to a desired conclusion), then the critical thinking exercise is complete.
